Наши услуги
О нас
Доклинические исследования
Регламент
Видео доклинические исследования
Клинические исследования
Регламент
Клинические исследования видео
Набор добровольцев
Архив исследований
Набор пациентов
Новости медицины
Интервью
Архив новостей
Контакты
Вакансии
НАВЕРХ

Регламент

V. Полимерсвязывающие методы (методы связывания лиганда)


1. Стандартные образцы

74. Макромолекулы являются гетерогенными, поэтому их активность и иммунореактивность могут варьироваться. Стандартный материал должен быть хорошо описан и документирован (например, должен иметь сертификат анализа и документы, подтверждающие происхождение стандартного материала). Необходимо использовать наиболее чистый стандартный образец из доступных. При приготовлении градуировочных стандартов и образцов для КК рекомендуется использовать серию стандартного образца, которая использовалась в при проведении доклинических и клинических исследований. При смене серии стандартного образца перед ее использованием необходимо провести описание ее аналитических характеристик и оценить ее биоаналитическую пригодность, чтобы удостовериться, что функциональные свойства метода (методики) не нарушены.

2. Документированное подтверждение того, что процесс, проводимый в пределах установленных параметров, может осуществляться эффективно и с воспроизводимыми результатами.Валидация методики

75. При изучении фармакокинетики лекарственных препаратов на основе макромолекул наиболее часто используются методы, основанные на связывании лиганда (МСЛ), или иммунохимические методы. Принципы валидации и рекомендации по анализу испытуемых образцов следует применять и к МСЛ. Однако такие методики могут создавать затруднения при проведении их валидации. Ввиду присущих макромолекулам свойств и их сложной структуры процесс пробоподготовки (извлечения) затруднителен, поэтому анализ, как правило, проводят без предварительного выделения анализируемого вещества. Кроме того, эти методики не позволяют непосредственно определить содержание (концентрацию) самих макромолекул, а косвенно измеряют результат реакции связывания макромолекул с реактивами, использующимися в методе (методике).

Полная валидация

Специфичность

76. Под специфичностью связывания с реактивами понимается способность реактивов связываться исключительно с изучаемым анализируемым веществом. Специфичность связана с концепцией перекрестной реактивности. Теоретически связывающий реактив должен быть специфичным и не должен обладать перекрестной реактивностью со «структурно родственными соединениями» (например, эндогенными соединениями, изоформами, вариантными формами анализируемого вещества и аналогичными по физико- химическим свойствам соединениями) и лекарственными препаратами, сопутствующий прием которых вероятен субъектами исследования. При разработке метода и его валидации, такие «структурно родственные соединения» как правило отсутствуют. Изучение специфичности допускается осуществлять после завершения валидации и накопления данных о свойствах анализируемого вещества. Специфичность следует испытывать с использованием образцов для КК, посредством прибавления в биологические образцы, никогда ранее не содержавшие действующего вещества (биологические образцы, полученные от животных или субъектов, которым никогда не вводили анализируемое вещество), возрастающих концентраций доступных «структурно родственных молекул» или лекарственных препаратов, которые, как ожидается, будут применяться одновременно, а также посредством определения правильности методики при анализе рассматриваемой макромолекулы как на уровнях НПКО, так и верхней границы определяемых концентраций. Критерии приемлемости методики для образцов для КК должны находиться в пределах ± 25 % от номинальных значений.

Селективность

77. Под селективностью методики связывания лиганда понимается способность определять рассматриваемое анализируемое вещество в присутствии неродственных соединений в биологическом образце. Ввиду присущих макромолекулам свойств их извлечение, как правило, не проводят. В связи с этим, неродственные соединения, содержащиеся в биологическом образце (например, ферменты, осуществляющие деградацию макромолекул, гетерофильные антитела или ревматоидный фактор) могут оказывать влияние на результат количественного определения при данном анализе. Селективность испытывают посредством прибавления не менее 10 источников биологических образцов на уровне НПКО или близком к нему. Такие источники должны включать гиперлипидемические и гемолизированные образцы. Следует включить в испытание источники биологических образцов, полученные у популяции пациентов с соответствующим заболеванием. Селективность следует изучить на уровне НПКО или близком к нему. Также целесообразно изучить селективность при более высоких концентрациях анализируемого вещества. Если влияние носит концентрационно зависимый характер, необходимо установить минимальную концентрацию, при которой такое влияние значимо. Значения правильности методики должны находиться в пределах ± 20% (± 25 % при НПКО) от номинальной концентрации в по меньшей мере 80 % изученных биологических образцов.

Эффект переноса

78. При использовании автоматизированных дозирующих устройств необходимо изучить возможность переноса в образцы анализируемого вещества посредством помещения холостых образцов после образцов с высокой концентрацией анализируемого вещества или градуировочного стандарта верхней границы определяемых концентраций

Выбор разновидности биологического образца.

79. Ввиду значительного влияния высоких концентраций структурно родственных эндогенных соединений на результат анализа определение некоторых макромолекул без предварительного их извлечения из сложных биологических образцов невозможно. Несмотря на то что использование извлечений из биологических образцов (например, с использованием сорбции на угле, иммуноаффинных сорбентов) или альтернативных матриц (например, модельных белковых буферных растворов, диализированной сыворотки) не рекомендуется, в некоторых случаях это является вынужденной мерой, поскольку иная стратегия определения рассматриваемого анализируемого вещества отсутствует. Градуировочную стандартную кривую допускается строить с помощью таких «модельных образцов». Образцы для КК следует готовить в фактическом биологическом образце с оценкой правильности, подтверждающей отсутствие эффекта матрицы.

Минимально необходимое разведение

80. Поскольку биологические образцы могут давать высокий фоновый сигнал, может потребоваться определение минимально необходимого разведения. Под минимально необходимым разведением понимается наименьшее разведение, до которого следует развести образец в буферном растворе для оптимизации правильности и прецизионности аналитического цикла пеосредством снижения соотношения «аналитический сигнал-фоновый сигнал». Для определения минимально необходимого разведения образцы следует готовить в той же разновидности биологического образца, что и испытуемые образцы.

Градуировочная кривая

81. При построении градуировочной кривой зависимость косвенно измеряемого сигнала от концентрации, как правило, является нелинейной, обычно сигмовидной. Следует использовать по меньшей мере 6 градуировочных стандартов в не менее чем 2 повторностях. Градуировочные стандарты следует приблизительно равномерно распределить на логарифмической шкале в пределах ожидаемого аналитического диапазона. Помимо градуировочных стандартов, для построения кривой можно использовать якорные точки, лежащие вне области аналитического диапазона. В ходе валидации следует изучить по меньшей мере 6 независимых градуировочных циклов. Чтобы установить совокупную устойчивость регрессионной модели градуировочной кривой, результаты следует проанализировать в виде таблицы. Допускается исключать градуировочный стандарт из кривой вследствие технической ошибки (промаха) при выявлении ее причины (например, ошибка отмеривания дозатором). Целевые концентрации градуировочных стандартов, рассчитанные из градуировочной кривой методом пересчета, должны находиться в пределах ± 20 % от номинального значения (± 25 % для НПКО и верхней границы определяемых концентраций) для не менее чем 75% проанализированных градуировочных стандартов. Якорные
калибраторы не требуют установления критериев приемлемости, поскольку они не входят в область аналитического диапазона.

Прецизионность и правильность

82. Для оценки прецизионности и правильности не следует использовать свежеприготовленные образцы для КК, их необходимо предварительно заморозить и работать с ними также, как при анализе испытуемых образцов. Для оценки правильности, прецизионности и общей ошибки метода (методики) следует использовать по меньшей мере 5 образцов для КК (ожидаемый уровень НПКО, уровень не более, чем в 3 раза превышающий НПКО, средний уровень, верхний уровень и ожидаемую верхнюю границу определяемых концентраций). Валидация должна имитировать реальный анализ испытуемых образцов, то есть если в соответствии с рекомендациями испытуемые образцы подвергаются двукратному определению (например, с использованием 2 л унок), т о в х оде в алидации о бразцы д ля К К с ледует п одвергать двукратному анализу (то есть с использованием 2 лунок на каждый образец для КК). Измерения следует проводить по меньшей мере в 6 независимых аналитических циклах в течение нескольких дней. В отношении правильности внутри цикла и между циклами средние значения концентраций должны укладываться в ± 20 % от номинального значения для каждого уровня (± 25 % для НПКО и верхней границы определяемых концентраций). Более того, общая ошибка (то есть сумма абсолютного значения относительной ошибки, выраженной в процентах, и коэффициента вариации, выраженного в процентах) не должна превышать 30 % (40 % для НПКО и верхней границы определяемых концентраций)

Линейность разведения образцов

83. Ввиду узости аналитического диапазона кривой градиуровочного стандарта необходимо, используя образцы для КК, подтвердить, что рассматриваемое анализируемое вещество, присутствующее в концентрациях, превышающих область количественного определения (выше верхней границы определяемых концентраций), можно точно измерить с помощью методики после разведения образца холостой матрицей, чтобы получить концентрации анализируемого вещества, укладывающиеся в валидированный аналитический диапазон. Дополнительной причиной проведения экспериментов с разведением служит обнаружение потенциальных прозон или «эффекта сползания», то есть подавления сигнала, обусловленного высокими концентрациями анализируемого вещества. Концентрация для каждого разведения, вычисленная методом пересчета, должна находиться в пределах ± 20 % от номинального значения концентрации после поправки на разведение, прецизионность конечных концентраций всех разведений не должна превышать 20 %.

Параллелизм

84. При наличии испытуемых образцов в целях выявления возможного эффекта матрицы или различающейся аффинности к метаболитам необходимо оценить параллелизм между соответствующими значениями на градуировочной кривой и результатами испытуемых образцов, подвергшихся серийному разведению. Испытуемый образец с высокой концентрацией (предпочтительно, близкой к Cmax) следует развести с помощью холостого образца минимум в 3 раза. Прецизионность между образцами в сериях разведений не должна превышать 30 %. Если образцы
разведены нелинейно (непараллельно), необходимо заранее определить процедуру представления результатов. Если в ходе валидации метода (методики) испытуемые образцы недоступны, параллелизм следует изучить, как только испытуемые образцы станут доступны.

Стабильность

85. Стабильность анализируемого вещества изучают, используя образцы для КК с низкими и высокими уровнями концентраций с помощью способа, указанного в подразделе «Стабильность» раздела 2 части II настоящих Требований. Как указывалось ранее, при изучении стабильности необходимо установить краткосрочную стабильность при комнатной температуре или температуре пробоподготовки и стабильность при «замораживании-размораживании». Кроме того, следует изучить естественную стабильность в замороженном состоянии при каждой температуре, при которой будут храниться образцы.

86. Среднее значение каждой концентрации должно находиться в пределах ± 20 % от номинального значения.

Реактивы

87. Ключевые реактивы, включая связывающие реактивы (например, связывающие белки, аптамеры, антитела или конъюгированные антитела), а также реактивы, содержащие соединения с ферментативной активностью, оказывают прямое влияние на результаты анализа, вследствие чего необходимо обеспечить их качество. Соответственно, при изменении серии реактива в ходе валидации методики или анализа образцов необходимо подтвердить правильность аналитических функций метода (методики), чтобы убедиться, что она после использования исходной или предыдущей серии не нарушалась.

88. В целях обеспечения отсутствия влияния на аналитические функции метода (методики) во времени необходимо документировать условия, гарантирующие поддержание стабильности как второстепенных реактивов (например, буферных растворов, растворителей и модификаторов значений рН), так и, что более важно, ключевых реактивов (реагентов).

Коммерческие наборы

89. Коммерческие наборы необходимо повторно валидировать, чтобы обеспечить правильность и прецизионность при анализе образцов уровня НПКО и образцов для КК в аналитическом диапазоне, который будет использоваться для анализа испытуемых образцов. Применяются принципы валидации, указанные в настоящем подразделе Требований.

3. Частичная валидация и перекрестная валидация

90. Все требования к валидации, рассмотренные в подразделах 3 и 4 части II настоящих Требований применимы к МСЛ.

4. Анализ испытуемых образцов

Аналитический цикл

91. Наиболее часто при МСЛ используется планшет для микропроб. Аналитический цикл может состоять из нескольких планшетов, однако каждый из них должен содержать отдельный комплект градуировочных стандартов и образцов для КК для компенсации различия между характеристиками планшетов. Некоторые платформы вмещают ограниченное количество образцов. В связи с этим допустимо помещать комплект градуировочных стандартов в первую и последнюю платформы, а образцы для КК размещать в каждой платформе.

92. Рекомендуется анализировать испытуемые образцы по меньшей мере в 2 повторностях.

Критерии приемлемости анализа испытуемых образцов.

93. Концентрации градуировочных стандартов, вычисленные методом пересчета, должны находиться в пределах ± 20 % от номинального значения их концентрации (за исключением НПКО и верхней границы определяемых концентраций, которые должны укладываться в ± 25 %). Этот критерий должен выполняться по меньшей мере для 75 % проанализированных градуировочных стандартов, минимальное количество которых для установления аналитического диапазона должно быть не менее 6. Данное требование не распространяется на якорные калибраторы.

94. Каждый планшет должен включать не менее 3 концентраций образцов для КК (низкого, среднего и верхнего уровня) по меньшей мере в 2 повторностях. Кроме того, при валидации образцы для КК должны имитировать анализ испытуемых образцов по количеству лунок на каждый испытуемый образец. По меньшей мере 67% проанализированных образцов для КК и 50 % образцов каждой концентрации должны укладываться в диапазон ± 20 % от номинального значения. Все несоответствия данному критерию необходимо обосновать.

Повторный анализ активных испытанных образцов

95. Все вопросы, касающиеся повторного анализа ранее испытанных образцов и рассмотренные в подразделе 4 раздела III настоящих Требований, применимы и к методикам связывания лиганда. Концентрации, полученные при первичном и повторном анализах, должны находиться в пределах ± 30 % от их среднего значения для не
менее чем 67 % повторов.